¡No te pierdas nada!
Únete a la comunidad de wijobs y recibe por email las mejores ofertas de empleo
Nunca compartiremos tu email con nadie y no te vamos a enviar spam
Suscríbete AhoraComercial y Ventas
9Adminstración y Secretariado
3Informática e IT
3Instalación y Mantenimiento
2Derecho y Legal
1Ver más categorías
Farmacéutica
1Marketing y Negocio
1Recursos Humanos
1Agricultura
0Alimentación
0Arte, Moda y Diseño
0Artes y Oficios
0Atención al cliente
0Banca
0Ciencia e Investigación
0Comercio y Venta al Detalle
0Construcción
0Contabilidad y Finanzas
0Cuidados y Servicios Personales
0Deporte y Entrenamiento
0Desarrollo de Software
0Diseño y Usabilidad
0Editorial y Medios
0Educación y Formación
0Energía y Minería
0Hostelería
0Industria Manufacturera
0Ingeniería y Mecánica
0Inmobiliaria
0Producto
0Publicidad y Comunicación
0Sanidad y Salud
0Seguridad
0Seguros
0Social y Voluntariado
0Telecomunicaciones
0Transporte y Logística
0Turismo y Entretenimiento
0Top Zonas
Badajoz
21Universidade da Coruña
Badajoz, ES
Research Support Technician 2025/Cp/082
Universidade da Coruña · Badajoz, ES
Big Data Office
Organisation/Company: University of A CoruñaResearch Field: Engineering > Computer EngineeringResearcher Profile: First Stage Researcher (R1)Positions: Bachelor PositionsCountry: SpainApplication Deadline: 21 May 2025 - 15:00 (Europe/Brussels)Type of Contract: PermanentJob Status: Part-timeHours Per Week: 17.5Offer Starting Date: 1 Sep 2025Funding: Not funded by an EU programmeReference Number: 2025/CP/082Research Title: AXUDAS PARA A CONSOLIDACIÓN E ESTRUTURACIÓN DE UNIDADES DE INVESTIGACIÓN COMPETITIVAS.
GPCOffer DescriptionGrant/funding reference: ED431B 2024/21Research line: Computer Science and Information TechnologyLocation & Schedule: CITIC - Monday to Friday: 10:30 - 14:00hTasks to PerformDevelopment of tools for validation of unsupervised classification of astronomical objects observed by Gaia within the DPAC consortium and CU8 unit.Validation of star parameterization results using Gaia RVS data, including external validation with astronomical sources and internal validation considering observational and neural network errors, as well as quantification of confidence intervals and studies of objects with anomalous chemical abundances.Development of deep learning techniques for reducing data dimensionality to enhance star parameterization.Development of generative deep learning methods for classifying non-parameterized sources and improving existing star data.Estimation of errors in distances derived from parallaxes using Bayesian statistics.Support in generating documentation for the project.Minimum Requirements1.
Academic record: Degree in computer engineering (1 point), master's related to the field (1 point).2.
Knowledge of English: B2=0.25 points; C1=0.5 points; C2=1 point.3.
Relevant work/research experience: including scholarships, research projects, publications, contracts, patents, and software registrations.4.
Experience with Gaia data analysis, especially spectra processing and high-resolution stellar spectra analysis.5.
Internationalization activities: participation in scientific meetings, research stays, training schools, dissemination activities.6.
Specific experience in AI, deep learning, classification, and clustering in Big Data Astronomy.Note: The position may be vacated if no candidate scores above 6 points.Selection ProcessApply via UDC online services, addressing applications to the Office of the Vice-Rectorate for Research and Transference, including the call reference.
Deadline: 5 working days after publication.Additional RequirementsDocuments needed: ID, degree certificate, CV, declarations of eligibility and data veracity.
For international candidates, contact ****** for instructions.
#J-18808-Ljbffr