Python Docker Cloud Coumputing Git Machine Learning

As a Machine Learning Engineer you will Build data and model pipelines end-to-end: create, source, augment, and validate datasets stand up training/fine-tuning/evaluation flows and ship models that meet product and customer requirements. Design...
As a Machine Learning Engineer you will

Build data and model pipelines end-to-end: create, source, augment, and validate datasets stand up training/fine-tuning/evaluation flows and ship models that meet product and customer requirements.

Design rigorous evaluation frameworks to verify task competence and alignment implement statistical testing, reliability checks, and continuous evaluation.

Scale training and inference: make effective use of distributed compute, optimize throughput/latency, and identify opportunities for algorithmic or systems-level speedups.

Improve models post-training: apply SFT and preference-based or reinforcement learning methods to enhance helpfulness, safety, and reasoning.

Optimize and specialize models: apply compression techniques to meet performance and footprint targets.

Collaborate across research and engineering: partner with ML engineers, researchers, and software engineers on data curation, evaluation design, training runs, model serving, and observability.

Contribute to our shared codebase: write clean, well-tested Python document decisions and artifacts uphold engineering standards.

Required Qualifications

Bachelor s degree in Computer Science, Math, Physics, Data Science, Operations Research, or related field.

Strong programming skills in Python and the modern ML stack (e.g., PyTorch), plus fluency with data tooling (NumPy/Pandas) and basic software practices (git, unit tests, CI).

Solid grounding in language modelling concepts around training, evaluation, model architecture, and data.

Comfort working with datasets at scale: collection, cleaning, filtering, labelling/annotation strategies, and quality controls.

Experience using GPU resources and familiarity with containerized workflows (e.g., Docker) and job schedulers or cloud orchestration.

Ability to read research papers, prototype ideas quickly, and turn them into reproducible, production-ready code.

Clear, pragmatic communication and a collaborative mindset.

Preferred Qualifications

PhD in Computer Science, Math, Physics, Data Science, Operations Research, or related field, or equivalent industry experience in machine learning, data science, or related roles, with demonstrated experience with NLP or LLMs.

Experience building foundational LLMs from the ground up.

Preferred Qualifications By Focus Area

Model Evaluation: Track record building task-grounded evals for LLMs, implementing or extending evaluation harnesses, and generating synthetic data for both evaluation and training deep understanding of LLM quirks and their ties to architecture and training dynamics.

Distributed Training: Hands-on experience debugging multi-node training, profiling/optimizing throughput and memory, and extending training frameworks to new architectures or optimizers comfort diagnosing flaky cluster issues.

Model Compression: Strong mathematical background and experience with pruning, quantization, and NAS ability to formulate and solve constrained optimization problems for accuracy/latency/footprint trade-offs and to integrate results into production.

Post-Training: Theoretical and practical familiarity with post-training and alignment techniques experience with SFT and preference/RL-based methods (e.g., DPO/GRPO, RLHF).

Python, Pytorch, LLM

No et perdis res!

Uneix-te a la comunitat de wijobs i rep per email les millors ofertes d'ocupació


Mai no compartirem el teu email amb ningú i no t'enviarem correu brossa

Subscriu-te ara

Darreres ofertes d'ocupació de Enginyer/a de Machine Learning a Madrid

Krell Consulting & Training

Descripción buscamos un Senior DevOps con al menos 2 años de experiencia para unirse a nuestro equipo en el área de...

Devops

Nova

CAS TRAINING

CAS Training selecciona a dos devops con al menos 2 años de experiencia en programación en bash, Kubernetes, Docker...

GlobalSysInfo

Location: Madrid (100% Remote) Engagement: Technical Assistance Seniority: Mid / Senior Responsibilities: Lead software...

Michael Page

Perfil buscado (Hombre/Mujer) • Gestionar la configuración, implementación y mantenimiento de sistemas en la nube basados...

Multiverse Computing

Madrid, ES

As a Machine Learning Engineer you will * Build data and model pipelines end-to-end: create, source, augment, and...

Data Engineer (AWS)

16 de set.

Grupo Digital

Únete a un proyecto de Business Intelligence donde podrás trabajar con grandes volúmenes de datos en AWS y aplicar tu...

Krell Consulting & Training

Madrid, ES

Descripción Buscamos un/a Ingeniero/a de Sistemas para participar en la elaboración de documentación de software conforme...

Ingeniero/a DevOps

16 de set.

Digital Talent Agency

Descripción Descripción del puesto: En Zemsania seleccionamos un/a Ingeniero/a DevOps para incorporarse a un proyecto...

Apiux Tech

Aplican residentes de España Descripción Del Proyecto Buscamos Consultores/as Senior con perfil de Ingeniero/a de Datos...

Serem

Madrid, ES

En serem estamos comprometidos con diversos proyectos y queremos contar con los mejores profesionales del sector.